
Developers

Thursday, May 16, 13

13

Building developers.google.com
on Google App Engine

Dan Sanderson
Developer Programs Engineer

Thursday, May 16, 13

3

Thursday, May 16, 13

Google Developers: developers.google.com

• Content management system

• Events calendar

• Developer showcase

• Google Developer Groups

• Google Developers Live

• Google I/O

4

Thursday, May 16, 13

This Talk

• Design of a piece of the content management system

- What we actually use

- Focus on the App Engine-y bits

• Tools and implementation

- A modern implementation, in Python 2.7

- Using modern features of App Engine

- Discrepancies and alternatives

5

Thursday, May 16, 13

Requirements

• Content managed separately from other parts of the site

• File-based CMS

- content developed “offline,” published with a client tool

- developer publishes a set of changes at a time, over many files

• Access controls for publishing

• Fast file serving

• Many content developers working concurrently

6

Thursday, May 16, 13

7

publish <dir-or-file> [<dir-or-file>...]

Thursday, May 16, 13

8

Thursday, May 16, 13

9

Thursday, May 16, 13

10

URL path
content type

data

Upload:

Thursday, May 16, 13

11

Thursday, May 16, 13

12

Thursday, May 16, 13

13

project root(s)
files to keep

Start:

Thursday, May 16, 13

14

Control-C

Thursday, May 16, 13

15

Thursday, May 16, 13

16

Thursday, May 16, 13

17

Thursday, May 16, 13

18

Thursday, May 16, 13

The Publishing Protocol

• Start a new Change, with the given change description

• Upload data for new and updated files in the change

• Commit the change

• Or Abort the change

- Cron job aborts stale Changes

19

Thursday, May 16, 13

Authenticated Web Services

• Google Cloud Endpoints

• Server libs for Python and Java

• Client libs for practically everything

• Especially easy for mobile (Android, iOS) and rich web (JavaScript)

20

Thursday, May 16, 13

Google Cloud Endpoints: Server

from protorpc import messages

class StartRequest(messages.Message):
 project_prefixes = messages.StringField(1, repeated=True)
 upload_paths = messages.StringField(2, repeated=True)

class StartResponse(messages.Message):
 change_id = messages.IntegerField(1, required=True)

21

API Definition: Messages

Python

Thursday, May 16, 13

Google Cloud Endpoints: Server

• Messages can be defined as “ProtoRPC”s...

• ... or directly from ndb models, with Endpoints Proto Datastore

- http://endpoints-proto-datastore.appspot.com/

22

Thursday, May 16, 13

Google Cloud Endpoints: Server

from google.appengine.ext import endpoints
from protorpc import remote

@endpoints.api(
 name='sitepublish',
 version='v1',
 description='Site Publish API',
 allowed_client_ids=CLIENT_IDS)
class SitePublishApi(remote.Service):

 # ...

23

API Definition: Service

Python

Thursday, May 16, 13

Google Cloud Endpoints: Server

@endpoints.api(...)
class SitePublishApi(remote.Service):

 @endpoints.method(
 StartRequest,
 StartResponse,
 name='start', path='start')
 def start(self, request):

 # ...

24

API Definition: Method

Python

Thursday, May 16, 13

Google Cloud Endpoints: Server

 @endpoints.method(
 StartRequest,
 StartResponse,
 name='start', path='start')
 def start(self, request):

 user = endpoints.get_current_user()
 if user is None or user.email() not in CONTENT_DEVELOPERS:
 raise endpoints.UnauthorizedException()

 # ...

25

API Definition: Authorization

Python

Thursday, May 16, 13

Google Cloud Endpoints: Server

 @endpoints.method(
 StartRequest,
 StartResponse,
 name='start', path='start')
 def start(self, request):
 # ...

 change = start_change(
 request.project_prefixes,
 request.upload_paths,
 endpoints.get_current_user())
 response = StartResponse(change_id=change.get_change_id())
 return response

26

API Definition: Request and Response

Python

Thursday, May 16, 13

Google Cloud Endpoints: Server

@endpoints.api(...)
class SitePublishApi(remote.Service):
 # ...

app = endpoints.api_server([SitePublishApi], restricted=False)

27

API Definition: Service

Python

Thursday, May 16, 13

Google Cloud Endpoints: Server

application: site-publish
version: 1
runtime: python27
api_version: 1
threadsafe: true

handlers:
- url: /_ah/spi/.*
 script: services.app

28

API Definition: Service

YAML

Thursday, May 16, 13

Google Cloud Endpoints: Server

• Authenticated endpoints use client IDs

- user signs in to Google, client gets permission to act as user when calling service

• Manage client IDs with the Google API Console

- https://developers.google.com/console/

29

Thursday, May 16, 13

Google Cloud Endpoints: Server

30

Thursday, May 16, 13

Google Cloud Endpoints: Server

• Create a project

• Under API Access, create a client

- “Web application,” even though this is a command-line tool

• For the new client, Edit settings...

- Authorized Redirect URIs:

http://localhost:8080/

http://localhost:8090/

http://your-site.com/

31

Thursday, May 16, 13

Google Cloud Endpoints: Server

from google.appengine.ext import endpoints
from protorpc import remote

@endpoints.api(
 name='sitepublish',
 version='v1',
 description='Site Publish API',
 allowed_client_ids=CLIENT_IDS)
class SitePublishApi(remote.Service):

 # ...

32

Setting the client IDs

Python

Thursday, May 16, 13

Google Cloud Endpoints: Server

from google.appengine.ext import endpoints
from protorpc import remote

CLIENT_IDS = ['145889693104-t0nm6og9vt8qmrdkus1aecm7d45stcgr.apps.googleusercontent.com',
 endpoints.API_EXPLORER_CLIENT_ID]

@endpoints.api(
 name='sitepublish',
 version='v1',
 description='Site Publish API',
 allowed_client_ids=CLIENT_IDS)
class SitePublishApi(remote.Service):

33

Setting the client IDs

Python

Thursday, May 16, 13

Google Cloud Endpoints: Server

• Try it out in the development server, no client code needed!

- http://localhost:8080/_ah/api/explorer

34

Thursday, May 16, 13

35

Demo

Thursday, May 16, 13

Google Cloud Endpoints: Server

36

Thursday, May 16, 13

Google Cloud Endpoints: Server

37

Thursday, May 16, 13

Google Cloud Endpoints: Server

38

Thursday, May 16, 13

39

Thursday, May 16, 13

40

Thursday, May 16, 13

Google Cloud Endpoints: Client

• google-api-python-client

- https://developers.google.com/api-client-library/

• Client uses a “discovery document” that describes the service API

• Looks like a language-native API to the client code

• Library contains tools for making OAuth easy

41

Thursday, May 16, 13

https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/

Google Cloud Endpoints: Client

• Generate the discovery document for the service: endpointscfg.py

- ~/google_appengine/endpointscfg.py gen_discovery_doc \

-o . -f rest --hostname=localhost:8080 \

services.SitePublishApi

• Make a one for testing, and one for real, using hostname parameter

- Hand-edit localhost version to replace “https” with “http”

42

Thursday, May 16, 13

Google Cloud Endpoints: Client

import os
from apiclient import discovery

discovery_doc_fname = os.path.join(
 os.path.dirname(__file__),
 'SitePublishApi.discovery')
discovery_doc = open(discovery_doc_fname).read()

site_publish_service = discovery.build_from_document(discovery_doc)

43

Loading the Discovery Document

Python

Thursday, May 16, 13

Google Cloud Endpoints: Client

import httplib2
import oauth2client

storage = oauth2client.file.Storage(CREDENTIALS_FILENAME)
credentials = storage.get()

if credentials is None or credentials.invalid:
 flow = oauth2client.client.OAuth2WebServerFlow(
 client_id=CLIENT_ID,
 client_secret=CLIENT_SECRET,
 scope='https://www.googleapis.com/auth/userinfo.email')

 credentials = oauth2client.tools.run(flow, storage)

http = credentials.authorize(httplib2.Http())

44

Authenticating the User

Python

Thursday, May 16, 13

Google Cloud Endpoints: Client

request = site_publish_service.start(
 body={
 'project_prefixes': ['/foo/'],
 'upload_paths': ['/foo/bar.html', '/foo/baz.png']})

response = request.execute(http=http)

change_id = response['change_id']

45

Calling the Service

Python

Thursday, May 16, 13

46

Demo

Thursday, May 16, 13

Data Modeling with ndb

• Modeling changes

• Strict ordering of changes

- Datetimes?

- System IDs?

47

key: ...

project_prefixes
upload_paths
created_by
is_committed
is_aborted

Change

Thursday, May 16, 13

Data Modeling with ndb

• Idea: Store the “next change ID,” update it transactionally when creating changes

• Singleton entity for the change ID

• Use a cross-group transaction

48

key: ...

project_prefixes
upload_paths
created_by
is_committed
is_aborted

Change

Thursday, May 16, 13

Data Modeling with ndb

• Idea: Store the “next change ID,” update it transactionally when creating changes

• Singleton entity for the change ID

• Use a cross-group transaction (or just put all changes in the same entity group)

49

key: “000001234”

project_prefixes
upload_paths
created_by
is_committed
is_aborted

Change
key: “single”

next_id

ChangeGroup

Thursday, May 16, 13

Data Modeling with ndb

from google.appengine.ext import ndb

class ChangeGroup(ndb.Model):
 next_id = ndb.IntegerProperty(required=True)

class Change(ndb.Model):
 upload_paths = ndb.StringProperty(repeated=True)
 project_prefixes = ndb.StringProperty(repeated=True)
 created_by = ndb.UserProperty()
 is_committed = ndb.BooleanProperty(default=False)
 is_aborted = ndb.BooleanProperty(default=False)

 def get_change_id(self):
 return int(self.key.string_id())

 @classmethod
 def get_key(cls, change_id):
 return ndb.Key(ChangeGroup, '1', cls, '%012d' % change_id)

50

Change Model and ChangeGroup Singleton

Python

Thursday, May 16, 13

Data Modeling with ndb

• Modeling the content

- View request can access its data using a get() by key = URL path

- Publishing needs to be able to store new content separately from live content, then “switch”

• Idea: Path entity keyed by URL path, with pointer to Content entity

51

Thursday, May 16, 13

Data Modeling with ndb

• Modeling the content

- View request can access its data using a get() by key = URL path

- Publishing needs to be able to store new content separately from live content, then “switch”

• Idea: Path entity keyed by URL path, with pointer to Content entity

52

key: URL path

content_key

Path
key: ...

content_type
data

Content

Thursday, May 16, 13

Data Modeling with ndb

• Entity grouping for content objects?

• Idea: One group per Path, containing the Path and multiple Content objects

• Can set content_key and delete old Content entity in one transaction

53

key: URL path

content_key

Path
key: ...

content_type
data

Content

Thursday, May 16, 13

Data Modeling with ndb

54

key: URL path

content_key

Path
key: [Path]:1234

content_type
data

Content

Thursday, May 16, 13

Data Modeling with ndb

55

key: URL path

content_key

Path
key: [Path]:1234

content_type
data

Content

key: [Path]:1257

content_type
data

Content

Thursday, May 16, 13

Data Modeling with ndb

56

key: URL path

content_key

Path
key: [Path]:1234

content_type
data

Content

key: [Path]:1257

content_type
data

Content

Thursday, May 16, 13

Data Modeling with ndb

class Path(ndb.Model):
 content_key = ndb.KeyProperty()
 is_deleted = ndb.BooleanProperty(default=False)
 last_applied_change_id = ndb.IntegerProperty()

 @classmethod
 def get_key(cls, path):
 return ndb.Key(cls, path)

class Content(ndb.Model):
 data = ndb.BlobProperty()
 content_type = ndb.StringProperty()

 @classmethod
 def get_key(cls, path, change_id):
 return ndb.Key(Path, path, cls, str(change_id))

57

Path and Content Models

Python

Thursday, May 16, 13

Applying a Change

• Client calls the commit() method with the change ID

• Server updates the Change record and initiates the “apply” task

• Commit and apply task are stored transactionally

- If either fails, neither occurs, and client sees the error

• Apply task spawns more tasks to paint the changes onto the website

• Any failed tasks get retried

58

Thursday, May 16, 13

Conflict Resolution

• What happens when two changes are applied out of order?

• Changes are ordered

• Store the last change ID with the Path

• Apply phase only “rolls forward”

• Deletes leave “tombstones,” so later deletes stick

- p.is_deleted = True, p.last_change_id = 1234

- can delete Content, but don’t delete Paths

59

Thursday, May 16, 13

Conflict Resolution

• What happens when two changes are applied out of order?

• Changes are ordered

• Store the last change ID with the Path

• Apply phase only “rolls forward”

• Deletes leave “tombstones,” so later deletes stick

- p.is_deleted = True, p.last_change_id = 1234

- can delete Content, but don’t delete Paths

60

key: URL path

content_key=None
is_deleted=True
last_change_id=1234

Path

Thursday, May 16, 13

Summary

• CMS with remote transactional publishing, arbitrary change size, eventual consistency

• Easy authenticated web services: Google Cloud Endpoints

• Transactional data storage: Google Cloud Datastore

• Data modeling: ndb for Python

• Background tasks: App Engine Task Queue

• Caching layer: Memcache, ndb

• Large object storage: Google Cloud Storage

61

Thursday, May 16, 13

62

Thanks!

developers.google.com

github.com/dansanderson
/site-publish

ae-book.appspot.com

Dan Sanderson
Programming Google
App Engine, 2nd ed.

Thursday, May 16, 13

Large Asset Support

• Blobstore / Google Cloud Storage

• Uploading:

- Client calls new endpoint for generating a Blobstore upload URL

- Client makes MIME multipart POST to that URL

- Server gets the Blobstore key, stores it in the Path

• Serving:

- Server gets the Blobstore key in Path instead of Content key

- Server puts Blobstore key in response, App Engine serves the file

63

Thursday, May 16, 13

Memcache

• Avoid hitting the datastore twice for every view request

• Use ndb to cache datastore entities automatically; just set a cache policy!

• Per-entity caching vs. result caching

• Don’t forget etags and cache controls

64

Thursday, May 16, 13

Faster Uploads

• Multi-threaded uploading

- Be sure to use a separate httplib2.Http() instance per thread.

• Batched uploads in the upload API

• Not-modified check at start time

• Compressed payloads

65

Thursday, May 16, 13

