Platforms in the Cloud

Dan Sanderson, Google December 4, 2014

O'REILLY'

BUILD & RUN SCALABLE PYTHO ON GOOGLE'S INFRASTRUCTUR

O'REILLY'

Programming Google App Engine with Java

BUILD & RUN SCALABLE JAVA APPS ON GOOGLE'S INFRASTRUCTURE

Dan Sanderson

Software as a Service (SaaS)

Gmail, Google Docs, NetSuite, SugarCRM

Infrastructure as a Service (laaS) Google Compute Engine, Amazon EC2; networking, storage

Software as a Service (SaaS) Gmail, Google Docs, NetSuite, SugarCRM

Platform as a Service (PaaS) Google App Engine, Heroku, Microsoft Azure

Infrastructure as a Service (laaS) Google Compute Engine, Amazon EC2; networking, storage All problems in computer science can be solved by another level of indirection. — David Wheeler

- web applications
- managed servers
- automatic scaling

Why PaaS?

server

request

response

load balancer

storage

Self Hosted

- configuration
- deployments
- OS upgrades, security patches
 - hardware failures
 - peak provisioning

IaaS / Managed Servers

- configuration
- deployments
- OS upgrades, security patches*
 - hardware failures
 - peak provisioning*

Google App Engine

- Easy deployment
- No servers to manage, no OS to update; App Engine does this for you
- Pay for what you use
 - Instance hours, storage, bandwidth, service calls

- Built on Google infrastructure
- Based on Google's internal best practices
- Based on standard technologies

App Engine Architecture

Services

Instances and Request Handlers Instances and Request Handlers

- Request handlers are ephemeral: now you see them, now you don't
- Can't rely on data persistence between requests
- Use storage services to persist data

Instances and Request Handlers

- In practice, app initialization is expensive
- An app instance is long running, can handle multiple requests in its lifetime
- Environment initialized; instance memory loaded
- Started and stopped as needed
- Can't rely on a single user's session to go to the same instance

Runtime Environments

- Sandboxing
 - Data isolation
 - Performance isolation
- Sandboxing → scalability

Runtime Environments

- Limits
 - Request timer
 - Restricted access to filesystem, sockets
 - More performance isolation: RAM, CPU
 - Data sizes: requests, responses, API calls, storage objects
- Limits \rightarrow scalability

Runtime Environments

Python

Java

Go

Services

- Features with their own scalable infrastructure
- Architecturally distinct from the runtime environments
- Synchronous and asynchronous calling APIs
- Data storage, communication, data processing

- Scalable object storage
- Based on high-powered key-value storage ("BigTable"); see also "MegaStore"
- Named properties, typed values
- "Schemaless;" data modeling in app code
- Replication using Paxos

- entities
- keys: kind, ID, [...]
- properties, typed values

p3key = p3.put()

Google Cloud Datastore

p3key = ndb.Key('Player', 324)
p3 = p3key.get()

if p3.level > 5: # ...

Google Cloud Datastore

class Player(ndb.Model): name = ndb.StringProperty() level = ndb.IntegerProperty() create_date = ndb.DateTimeProperty()

```
p1 = Player()
p1.level = 7
p1.put()
```

```
p2 = Player()
p2.level = 'warrior' # BadValueError
p2.put()
```

- queries
 - kind (Player)
 - property filters (level > 7), property sort order (creation_date ascending)
- indexes
 - key, property (Player : level)
 - custom indexes

Every query is served by reading rows from an index.

Indexes are updated as data is updated.

Google Cloud Datastore

Query speed is proportional to the size of the result set, not the size of the data set.

- transactions
- local vs. global transactions
- datastore transaction locality = entity groups
 - defined by the key
- strong consistency vs. eventual consistency

From PaaS to laaS

Managed VMs

- automatic scaling
- streamlined runtime
- optimized for small units of computation
- automatic scaling
- full virtual machines
- more flexible software
- manual scaling
- full virtual machines
- suitable for large units of computation

Google Container Engine (GKE)

Thank you!

cloud.google.com

ae-book.appspot.com

Programming Google App Engine with Python, ... with Java Early Access available now

Dan Sanderson profiles.google.com/ dan.sanderson

