
Platforms in the Cloud
Dan Sanderson, Google 

December 4, 2014





Software as a Service (SaaS)
Gmail, Google Docs, NetSuite, SugarCRM

Infrastructure as a Service (IaaS)
Google Compute Engine, Amazon EC2; 
networking, storage



Software as a Service (SaaS)
Gmail, Google Docs, NetSuite, SugarCRM

Infrastructure as a Service (IaaS)
Google Compute Engine, Amazon EC2; 
networking, storage

Platform as a Service (PaaS)
Google App Engine, Heroku, Microsoft Azure



All problems in computer science can be 
solved by another level of indirection.

— David Wheeler



• web applications 

• managed servers 

• automatic scaling



Why PaaS?



client



server



request

response



load balancer



storage



• configuration 
• deployments 
• OS upgrades, security patches 
• hardware failures 
• peak provisioning

Self Hosted



• configuration 
• deployments 
• OS upgrades, security patches* 
• hardware failures 
• peak provisioning*

IaaS / Managed Servers



Google App Engine



Google App Engine

• Easy deployment 

• No servers to manage, no OS to update; 
App Engine does this for you 

• Pay for what you use 

• Instance hours, storage, bandwidth,  
service calls



Google App Engine

• Built on Google infrastructure 

• Based on Google’s internal best practices 

• Based on standard technologies







App Engine 
Architecture



App 
handlers

Static file 
handlers

FE 
cache

AE 
FE

Datastore Memcache

Task 
Queue

URL 
Fetch

Mail XMPP

Blobstore Channel

Services

⋮



Instances and 
Request Handlers



Instances and 
Request Handlers

• Request handlers are ephemeral:  
now you see them, now you don’t 

• Can’t rely on data persistence between requests 

• Use storage services to persist data



Request 
handler

Request 
handler

Request 
handler

Request 
handler

⋯ ⋯



Instances and 
Request Handlers

• In practice, app initialization is expensive 

• An app instance is long running, can handle 
multiple requests in its lifetime 

• Environment initialized; instance memory loaded 

• Started and stopped as needed 

• Can’t rely on a single user’s session to go to the 
same instance



Instance

Request 
handler

⋯



Instance

Request 
handler

⋯



Instance InstanceInstance

Request 
handler

Request 
handler

Request 
handler

⋯



Instance InstanceInstance

Request 
handler

Request 
handler

Request 
handler

⋯
Request 
handler

Request 
handler

Request 
handler

threading enabled



Instance InstanceInstance

Request 
handler

Request 
handler

Request 
handler

⋯
Request 
handler

Request 
handler

Request 
handler

threading enabled



Instance InstanceInstance

Request 
handler

Request 
handler

⋯
Request 
handler

Request 
handler

threading enabled



Runtime Environments

• Sandboxing 

• Data isolation 

• Performance isolation 

• Sandboxing → scalability



Runtime Environments
• Limits 

• Request timer 

• Restricted access to filesystem, sockets 

• More performance isolation: RAM, CPU 

• Data sizes: requests, responses, API calls, storage 
objects 

• Limits → scalability



Runtime Environments

Python Java

Go PHP



Services

• Features with their own scalable infrastructure 

• Architecturally distinct from the runtime 
environments 

• Synchronous and asynchronous calling APIs 

• Data storage, communication, data processing



Google Cloud 
Datastore



Google Cloud 
Datastore

• Scalable object storage 

• Based on high-powered key-value storage 
(“BigTable”); see also “MegaStore” 

• Named properties, typed values 

• “Schemaless;” data modeling in app code 

• Replication using Paxos



Google Cloud 
Datastore

• entities 

• keys: kind, ID, […] 

• properties, typed values



Google Cloud 
Datastore

p3 = Player(name=‘druidjane’, 
            level=7, 
            create_date=now) 
p3key = p3.put()

  Key:

  name:           ‘druidjane’
  level:            7
  create_date: 2012-10-09
                     10:20:00 am PDT

Kind: Player
ID: 324



Google Cloud 
Datastore

p3key = ndb.Key(‘Player’, 324) 
p3 = p3key.get() 

if p3.level > 5: 
  # ...

  Key:

  name:           ‘druidjane’
  level:            7
  create_date: 2012-10-09
                     10:20:00 am PDT

Kind: Player
ID: 324



Google Cloud 
Datastore

class Player(ndb.Model): 
  name = ndb.StringProperty() 
  level = ndb.IntegerProperty() 
  create_date = ndb.DateTimeProperty() 

p1 = Player() 
p1.level = 7 
p1.put() 

p2 = Player() 
p2.level = ‘warrior’  # BadValueError 
p2.put()



Google Cloud 
Datastore

• queries 

• kind (Player) 

• property filters (level > 7), 
property sort order (creation_date ascending) 

• indexes 

• key, property (Player : level) 

• custom indexes



Google Cloud 
Datastore

Every query is served by 
reading rows from an index.

Indexes are updated as 
data is updated. 



Google Cloud 
Datastore

Query speed is proportional to  
the size of the result set, 

not the size of the data set.



Google Cloud 
Datastore

• transactions 

• local vs. global transactions 

• datastore transaction locality = entity groups 

• defined by the key 

• strong consistency vs. eventual consistency



From PaaS to IaaS



• automatic scaling 
• streamlined runtime 
• optimized for small 

units of computation

• manual scaling 
• full virtual machines 
• suitable for large 

units of computation

Managed VMs
• automatic scaling 
• full virtual machines 
• more flexible software



Google Container Engine (GKE)



Thank you! 

cloud.google.com 

ae-book.appspot.com 

Programming Google App Engine 
with Python, … with Java 
Early Access available now 

Dan Sanderson 
profiles.google.com/ 
dan.sanderson


