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scalability

Each user gets the same quality of experience, 
regardless of how many users there are.

Wednesday, May 23, 12



Google App Engine

• Platform for building scalable web applications

• Built on Google infrastructure

• Based on Google’s internal best practices

• Pay for what you use

• Apps, instance hours, storage, bandwidth, service calls

• Free to start!

• Preview opened 2008; out of preview in 2011
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Google App Engine

• Easy development

• Easy deployment

• No servers to manage, no OS to update;
App Engine does this for you

• Based on standard technologies
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• Request handling infrastructure

• Application runtime environments

• Services

• Tools and libraries

• Administration Console

Google App Engine
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Demo
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Request Handlers
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Request Handlers
• Requests come in, responses go out

• Request handler computes the response for a request

• Call services to manipulate stored data,
perform special tasks

• Handler created when request arrives,
destroyed after response is sent

• “Stateless” → scalability
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Request Handlers

• All code runs in a request handler

• Web hooks

• Unit of computation for larger jobs
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Instances
• Longer-lived containers for request handlers

• Reduce initialization costs

• Maximize CPU utilization

• Exploit instance RAM

• Parameters to tune instance creation and destruction

• “Instance hours” are the billable unit for computation
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Runtime Environments
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Runtime Environments
• Python

• Python 2.7; Python 2.5

• WSGI; CGI

• Java

• Full Java 6 JVM, J2EE servlet container

• Java, Scala, Ruby (JRuby), PHP (Quercus), JavaScript 
(Rhino), Python (JPython)

• Go
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Runtime Environments
import logging
import webapp2

class MainPage(webapp2.RequestHandler):
    def get(self):
        status = self.request.get(‘status’)
        if status not in ('running', 'error', 'success'):
            logging.warning('Invalid status')
            status = ‘error’
        
        template = template_env.get_template('home.html')
        context = {
            'status': status,
        }
        self.response.out.write(template.render(context))

application = webapp2.WSGIApplication([('/', MainPage)],
                                      debug=True)
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Runtime Environments
import javax.servlet.http.*;

@SuppressWarnings("serial")
public class MainPageServlet extends HttpServlet {
    public void doGet(HttpServletRequest req,
                      HttpServletResponse resp)
        throws IOException, ServletException {
            String status = req.getAttribute("status");
            if (!status.equals("running") ||
                !status.equals("success"))
                status = "error";

            req.setAttribute("status", status);
            resp.setContentType("text/html");
            RequestDispatcher jsp =
                req.getRequestDispatcher("/WEB-INF/home.jsp");
            jsp.forward(req, resp);
    }
}

Wednesday, May 23, 12



Runtime Environments

• Sandboxing

• Data isolation

• Performance isolation

• Sandboxing → scalability
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Runtime Environments

• Limits

• Request timer

• Restricted access to filesystem, sockets

• More performance isolation: RAM, CPU

• Data sizes: requests, responses, API calls, 
storage objects

• Limits → scalability
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Services
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Services

• Features with their own scalable 
infrastructure

• Architecturally distinct from the runtime 
environments

• Synchronous and asychronous calling APIs
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Services

• Data storage

• Communication

• Data processing and manipulation

• Computation primitives
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Datastore

• Scalable object storage

• Replication using Paxos

• Named properties, typed values

• “Schemaless;” data modeling libraries

• Keys, kinds, and indexed queries
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Datastore
from google.appengine.ext import db

class UserPrefs(db.Model):
    user = db.UserProperty(auto_current_user_add=True)
    created_datetime = db.DateTimeProperty(auto_now_add=True)
    tz_offset = db.IntegerProperty(default=0)
    subscribed = db.BooleanProperty()

class NewUser(webapp2.RequestHandler):
    def post(self):
        new_user = UserPrefs()
        new_user.subscribed = \
            self.request.get('subscribed')) is not None
        new_user.put()
        
        self.redirect('/welcome')
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Datastore

• Datastore queries

• All queries are pre-indexed

• Built-in indexes do most of the work

• Custom indexes for complex queries; 
SDK helps you out

• Cursors
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Datastore

query = UserPrefs.all()
query.filter(‘subscribed =’, True)

for userPref in query:
    # ... userPref.user ...
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Datastore

• Fetch by key: O(1)

• Create and update: O(1)

• Queries: O(number of results)

• not the total number of entities!

Each user gets the same quality of experience, 
regardless of how many users there are.
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Datastore

• Transactional

• Local transactions

• Strong consistency

• Eventually consistent cross-group 
transactions

• Local and global indexes
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Memcache

• Non-durable key-value store

• Distributed global cache

• Atomic set/add/replace, get, incr/decr of a 
single value

• Essential technique for speeding up user 
requests
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Blobstore

• Datastore and Memcache limited to 1MB 
objects

• Blobstore object size is unlimited

• Direct uploads and downloads

• Limited read/write app access
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Communication

• HTTP

• Out: URL Fetch

• In: request handlers!

• app-id.appspot.com

• www.your-domain.com

• SSL: https://app-id.appspot.com/ ;
custom domain support soon

Wednesday, May 23, 12

http://www.your-domain.com
http://www.your-domain.com
https://app-id.appspot.com
https://app-id.appspot.com


Communication

• Email

• Out: a simple service call

• In: request handlers!

• app-id@appspotmail.com

• anything@app-id.appspotmail.com

• “From” addresses: administrator, receiving 
address, current user (Google Accounts)
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Communication

• Instant messages (XMPP)

• Out: a simple service call

• In: request handlers!

• Addresses (“JIDs”)

• app-id@appspot.com
anything@app-id.appspotchat.com

• (No custom domain support.)
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Communication

• Channels

• Real-time push messages to browsers

• Comet connection

• JavaScript adapter provided
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Data Processing

• Images

• Search (experimental!)

• Prospective search (experimental!)
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Task Queues

• Defer work out of the user request

• Add a task to a queue, loosely FIFO

• Producers and consumers
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Task Queues

• Push queues

• A task is a request to your app!
URL path + data

• Processed at a configurable rate

• Retried until “successful”

• Task chains

• App is both producer and consumer
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Task Queues

• Pull queues

• A task is any kind of payload

• Consumer API can pull tasks individually 
or in batches

• App API; useful with backends!

• Authenticated REST API
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Task Queues

You can enqueue tasks in a datastore transaction!
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Tools and Libraries
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Language-specific APIs

• Access services using the idioms of the 
language (Python, Java, Go)

• Manage synchronous and asynchronous 
calls

• Stubs for testing
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Data Modeling

• Translate between datastore entities and 
program objects

• Enforce data schemas and structures

• Python: ext.db, ext.ndb

• Java: datastore API; JDO, JPA; Objectify
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Pipelines

• Execute multiple tasks over large-scale data 
with parallelism

• Construct task dependencies

• Job status monitor

• http://code.google.com/p/appengine-
pipeline
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MapReduce

• Large-scale data processing

• Simple programming model

• map(item) → (key, value)*

• shuffle

• reduce(key, values) → result

• Can chain multiple MapReduces using 
pipelines
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MapReduce

• App Engine implementation mostly in 
application code!

• http://code.google.com/p/appengine-
mapreduce

• Primitive operations in services, e.g. 
Blobstore

• Experimental
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Development Server

• Simulates runtime environment and 
services on your local computer

• Suitable for functional testing

• Python: Launcher, dev_appserver.py

• Java: Eclipse plugin, dev_appserver.sh
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Deployment Tools

• Deploy software, files, configuration

• Download logs for offline analysis

• Python: Launcher, appcfg.py

• Java: Eclipse plugin, appcfg.sh

Wednesday, May 23, 12



Administration Console
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Administration Console

• View traffic graphs

• Browse and search logs

• Inspect live data; backup/restore

• Manage instances

• Adjust budget and billing settings
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• Request handling infrastructure

• Computation infrastructure

• Storage: fast, durable, arbitrarily large

• Simple development model,
high productivity

• Managed infrastructure: just add code

Google App Engine
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developers.google.com/
appengine

appengine.google.com

ae-book.appspot.com

Programming Google App 
Engine, 2nd ed.
Summer 2012

Dan Sanderson
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