
Building Scalable
Web Applications

with
Google App Engine

Dan Sanderson
May 15, 2012

Wednesday, May 23, 12

Wednesday, May 23, 12

Wednesday, May 23, 12

scalability

Each user gets the same quality of experience,
regardless of how many users there are.

Wednesday, May 23, 12

Google App Engine

• Platform for building scalable web applications

• Built on Google infrastructure

• Based on Google’s internal best practices

• Pay for what you use

• Apps, instance hours, storage, bandwidth, service calls

• Free to start!

• Preview opened 2008; out of preview in 2011

Wednesday, May 23, 12

Google App Engine

• Easy development

• Easy deployment

• No servers to manage, no OS to update;
App Engine does this for you

• Based on standard technologies

Wednesday, May 23, 12

• Request handling infrastructure

• Application runtime environments

• Services

• Tools and libraries

• Administration Console

Google App Engine

Wednesday, May 23, 12

Demo

Wednesday, May 23, 12

Request Handlers

Wednesday, May 23, 12

Request Handlers
• Requests come in, responses go out

• Request handler computes the response for a request

• Call services to manipulate stored data,
perform special tasks

• Handler created when request arrives,
destroyed after response is sent

• “Stateless” → scalability

Wednesday, May 23, 12

Request Handlers

• All code runs in a request handler

• Web hooks

• Unit of computation for larger jobs

Wednesday, May 23, 12

Instances
• Longer-lived containers for request handlers

• Reduce initialization costs

• Maximize CPU utilization

• Exploit instance RAM

• Parameters to tune instance creation and destruction

• “Instance hours” are the billable unit for computation

Wednesday, May 23, 12

Runtime Environments

Wednesday, May 23, 12

Runtime Environments
• Python

• Python 2.7; Python 2.5

• WSGI; CGI

• Java

• Full Java 6 JVM, J2EE servlet container

• Java, Scala, Ruby (JRuby), PHP (Quercus), JavaScript
(Rhino), Python (JPython)

• Go

Wednesday, May 23, 12

Runtime Environments
import logging
import webapp2

class MainPage(webapp2.RequestHandler):
 def get(self):
 status = self.request.get(‘status’)
 if status not in ('running', 'error', 'success'):
 logging.warning('Invalid status')
 status = ‘error’

 template = template_env.get_template('home.html')
 context = {
 'status': status,
 }
 self.response.out.write(template.render(context))

application = webapp2.WSGIApplication([('/', MainPage)],
 debug=True)

Wednesday, May 23, 12

Runtime Environments
import javax.servlet.http.*;

@SuppressWarnings("serial")
public class MainPageServlet extends HttpServlet {
 public void doGet(HttpServletRequest req,
 HttpServletResponse resp)
 throws IOException, ServletException {
 String status = req.getAttribute("status");
 if (!status.equals("running") ||
 !status.equals("success"))
 status = "error";

 req.setAttribute("status", status);
 resp.setContentType("text/html");
 RequestDispatcher jsp =
 req.getRequestDispatcher("/WEB-INF/home.jsp");
 jsp.forward(req, resp);
 }
}

Wednesday, May 23, 12

Runtime Environments

• Sandboxing

• Data isolation

• Performance isolation

• Sandboxing → scalability

Wednesday, May 23, 12

Runtime Environments

• Limits

• Request timer

• Restricted access to filesystem, sockets

• More performance isolation: RAM, CPU

• Data sizes: requests, responses, API calls,
storage objects

• Limits → scalability

Wednesday, May 23, 12

Services

Wednesday, May 23, 12

Services

• Features with their own scalable
infrastructure

• Architecturally distinct from the runtime
environments

• Synchronous and asychronous calling APIs

Wednesday, May 23, 12

Services

• Data storage

• Communication

• Data processing and manipulation

• Computation primitives

Wednesday, May 23, 12

Datastore

• Scalable object storage

• Replication using Paxos

• Named properties, typed values

• “Schemaless;” data modeling libraries

• Keys, kinds, and indexed queries

Wednesday, May 23, 12

Datastore
from google.appengine.ext import db

class UserPrefs(db.Model):
 user = db.UserProperty(auto_current_user_add=True)
 created_datetime = db.DateTimeProperty(auto_now_add=True)
 tz_offset = db.IntegerProperty(default=0)
 subscribed = db.BooleanProperty()

class NewUser(webapp2.RequestHandler):
 def post(self):
 new_user = UserPrefs()
 new_user.subscribed = \
 self.request.get('subscribed')) is not None
 new_user.put()

 self.redirect('/welcome')

Wednesday, May 23, 12

Datastore

• Datastore queries

• All queries are pre-indexed

• Built-in indexes do most of the work

• Custom indexes for complex queries;
SDK helps you out

• Cursors

Wednesday, May 23, 12

Datastore

query = UserPrefs.all()
query.filter(‘subscribed =’, True)

for userPref in query:
 # ... userPref.user ...

Wednesday, May 23, 12

Datastore

• Fetch by key: O(1)

• Create and update: O(1)

• Queries: O(number of results)

• not the total number of entities!

Each user gets the same quality of experience,
regardless of how many users there are.

Wednesday, May 23, 12

Datastore

• Transactional

• Local transactions

• Strong consistency

• Eventually consistent cross-group
transactions

• Local and global indexes

Wednesday, May 23, 12

Memcache

• Non-durable key-value store

• Distributed global cache

• Atomic set/add/replace, get, incr/decr of a
single value

• Essential technique for speeding up user
requests

Wednesday, May 23, 12

Blobstore

• Datastore and Memcache limited to 1MB
objects

• Blobstore object size is unlimited

• Direct uploads and downloads

• Limited read/write app access

Wednesday, May 23, 12

Communication

• HTTP

• Out: URL Fetch

• In: request handlers!

• app-id.appspot.com

• www.your-domain.com

• SSL: https://app-id.appspot.com/ ;
custom domain support soon

Wednesday, May 23, 12

http://www.your-domain.com
http://www.your-domain.com
https://app-id.appspot.com
https://app-id.appspot.com

Communication

• Email

• Out: a simple service call

• In: request handlers!

• app-id@appspotmail.com

• anything@app-id.appspotmail.com

• “From” addresses: administrator, receiving
address, current user (Google Accounts)

Wednesday, May 23, 12

mailto:app-id@appspotmail.com
mailto:app-id@appspotmail.com
mailto:anything@app-id.appspotmail.com
mailto:anything@app-id.appspotmail.com

Communication

• Instant messages (XMPP)

• Out: a simple service call

• In: request handlers!

• Addresses (“JIDs”)

• app-id@appspot.com
anything@app-id.appspotchat.com

• (No custom domain support.)

Wednesday, May 23, 12

mailto:app-id@appspot.com
mailto:app-id@appspot.com
mailto:anything@app-id.appspotchat.com
mailto:anything@app-id.appspotchat.com

Communication

• Channels

• Real-time push messages to browsers

• Comet connection

• JavaScript adapter provided

Wednesday, May 23, 12

Data Processing

• Images

• Search (experimental!)

• Prospective search (experimental!)

Wednesday, May 23, 12

Task Queues

• Defer work out of the user request

• Add a task to a queue, loosely FIFO

• Producers and consumers

Wednesday, May 23, 12

Task Queues

• Push queues

• A task is a request to your app!
URL path + data

• Processed at a configurable rate

• Retried until “successful”

• Task chains

• App is both producer and consumer

Wednesday, May 23, 12

Task Queues

• Pull queues

• A task is any kind of payload

• Consumer API can pull tasks individually
or in batches

• App API; useful with backends!

• Authenticated REST API

Wednesday, May 23, 12

Task Queues

You can enqueue tasks in a datastore transaction!

Wednesday, May 23, 12

Tools and Libraries

Wednesday, May 23, 12

Language-specific APIs

• Access services using the idioms of the
language (Python, Java, Go)

• Manage synchronous and asynchronous
calls

• Stubs for testing

Wednesday, May 23, 12

Data Modeling

• Translate between datastore entities and
program objects

• Enforce data schemas and structures

• Python: ext.db, ext.ndb

• Java: datastore API; JDO, JPA; Objectify

Wednesday, May 23, 12

Pipelines

• Execute multiple tasks over large-scale data
with parallelism

• Construct task dependencies

• Job status monitor

• http://code.google.com/p/appengine-
pipeline

Wednesday, May 23, 12

http://code.google.com/p/appengine-mapreduce
http://code.google.com/p/appengine-mapreduce
http://code.google.com/p/appengine-mapreduce
http://code.google.com/p/appengine-mapreduce

MapReduce

• Large-scale data processing

• Simple programming model

• map(item) → (key, value)*

• shuffle

• reduce(key, values) → result

• Can chain multiple MapReduces using
pipelines

Wednesday, May 23, 12

MapReduce

• App Engine implementation mostly in
application code!

• http://code.google.com/p/appengine-
mapreduce

• Primitive operations in services, e.g.
Blobstore

• Experimental

Wednesday, May 23, 12

http://code.google.com/p/appengine-mapreduce
http://code.google.com/p/appengine-mapreduce
http://code.google.com/p/appengine-mapreduce
http://code.google.com/p/appengine-mapreduce

Development Server

• Simulates runtime environment and
services on your local computer

• Suitable for functional testing

• Python: Launcher, dev_appserver.py

• Java: Eclipse plugin, dev_appserver.sh

Wednesday, May 23, 12

Deployment Tools

• Deploy software, files, configuration

• Download logs for offline analysis

• Python: Launcher, appcfg.py

• Java: Eclipse plugin, appcfg.sh

Wednesday, May 23, 12

Administration Console

Wednesday, May 23, 12

Administration Console

• View traffic graphs

• Browse and search logs

• Inspect live data; backup/restore

• Manage instances

• Adjust budget and billing settings

Wednesday, May 23, 12

• Request handling infrastructure

• Computation infrastructure

• Storage: fast, durable, arbitrarily large

• Simple development model,
high productivity

• Managed infrastructure: just add code

Google App Engine

Wednesday, May 23, 12

developers.google.com/
appengine

appengine.google.com

ae-book.appspot.com

Programming Google App
Engine, 2nd ed.
Summer 2012

Dan Sanderson
profiles.google.com/
dan.sanderson

Wednesday, May 23, 12

http://developers.google.com/appengine
http://developers.google.com/appengine
http://developers.google.com/appengine
http://developers.google.com/appengine

